MATH 53, QUIZ 4

Be sure to show neat, organized, complete work in the space provided.

1. A helix (spiral) centered around the z-axis starts at the point $(4,0,0)$ when $t=0$, makes 2 full revolutions, and ends at the point $(4,0,10)$ when $t=1$.
(a) There are TWO such helixes. Give the parametrization of the one which winds counterclockwise when viewed from above. Make sure your parametrization is for $0 \leq t \leq 1$, as stated above.

(b) What is the arclength of the helix?

$$
\int_{0}^{1}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{1} \sqrt{(16 \pi)^{2}+10^{2}} d t
$$

Answer: $\sqrt{(16 \pi)^{2}+100}$
2. Consider the function $f(x, y)=\frac{3 x^{3}}{x^{2}+y^{2}}$ as (x, y) approaches $(0,0)$.
(a) By switching to polar coordinates, evaluate the limit if it exists, or explain why it does not exist. Make sure to fully justify your answer.

$$
\begin{aligned}
& \begin{array}{l}
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{3}}{x^{2}+y^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\
\theta=\text { anything }}} \frac{3 r^{3} \cos ^{3} \theta}{r^{2}}=\lim _{r \rightarrow 0^{+}} 3 r \cos ^{3} \theta . \\
\theta \text { anything }
\end{array}=0 . \\
& \text { and } \lim _{r \rightarrow 0^{+}}(-3 r)=0=\lim _{r \rightarrow 0^{+}} 3 r \text { so Squeeze Tum. says }
\end{aligned}
$$

(b) In view of your answer to the preceding part, is it possible to extend f to a continuous function g whose domain is the entirety of \mathbb{R}^{2} ? If not, why not? If so, what would the value of $g(0,0)$ be?

$$
\text { Yes. Let } g(0,0)=0 \text {, ie. } g \text { is defined by } g(x, y)=\left\{\begin{array}{cl}
\frac{3 x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0) .
\end{array}\right.
$$

Feedback: If you have any feedback you'd like to share, please write it here. If there are any specific topics you are confused about, feel free to write them here as well.

